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Highly enantioselective and diastereoselective reactions or reac-Scheme 1. Proposed Model for the Modified Cinchona

tion cascades generating in one step chiral products with multiple Alkaloid-Catalyzed Conjugate Additions
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mentary diastereoselectivity in these reactions remains an important “0_2 N g Lo o R

but challenging problem in asymmetric synthesis. AZ=B and X= COR, COOR, CN, No2

Significant progress has been made on the establishment of S _ N _
complementary diastereoselectivity with catalytic asymmetric reac- 7able 1. Optimization of Reaction Conditions Using Model
. . . . . Substratesa?
tions creating adjacent stereocentettn contrast, enantioselective
and diastereoselective reactions that provide stereoselective access
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centers are extremely rare even for those employing a stoichiometric

5'a
amount of chiral reagentdn particular, to our knowledge, no such s, 33) URSRY (1SRRI
reaction mediated by a chiral catalyst has been reported. We entry  catalyst 5a5'a  eel% of 5a R
document here the development of a new, catalytic asymmetric 1 Quinine 1:1.8 -5 v H N
tandem conjugate additierprotonation reaction that generates 2 C9-epiQ 1:1.1 -47 R_%\CZIN\HAW H
nonadjacent stereocenters with a complementary sense of diaste- 8 Quinidine 119 17 o WM

.. . . . 4 Cinchonidine 1:2.3 30 "H-N S
reoselectivity relative to that reported with the®H cinchona 5 Q-2a 241 88 .
alkaloids 1 (Scheme 1¥%. Consequently, it is now possible to 6 Q-2b 1.8:1 85 A= YO DCF
accomplish one-step and stereoselective construction of 1,3- ’ Q-2 1o o7 N FaC :
8 Q-1a 1:20 93¢ Q-2¢

tertiary—quaternary stereocenters in any of the four possible
absolute configurations with catalytic control. aOnly one enantiomer was drawn f&a and 5'a. ® See Supporting
We previously reported a highly enantioselective and diastereo- Information (Sl) for experimental detafl.ee of5'a.
selective catalytic tandem conjugate additigmotonation of trisub-
stituted carbon nucleophiles t-chloroacrylonitrile4 using 6- 5ain 10:1 diastereomeric ratio (dr) and 97% ee. Most importantly,
OH cinchona alkaloid catalydt(Scheme 1). As rationalized by the ~ the sense of diastereoselectivity iyand 2 were found to be
transition-state model illustrated in Scheméthe stereochemical complementary to each other (entry 7 vs entry 8, Table 1).
outcome of this asymmetric tandem reaction resulted from a net- These results obtained with a cyclic Michael donor implied that
work of hydrogen-bonding interactions betwelewith the reacting the switch of the sense of diastereoselectivity between the two
Michael donorX and acceptol in the nucleophilic addition step  reactions catalyzed by Qaand Q2c, respectively, is independent
and, subsequently, with the putative enol intermediatghe proton- of the geometric configuration of the double bond in the enolic
ation step. This led us to hypothesize that, by exploring bifunctional form of the Michael donoB. Instead, it may arise from a reversal
catalysts bearing the hydrogen bond donor and acceptor motifs inof the face of the Michael donor being exposed to the Michael
altered spatial relationships, an asymmetric tandem conjugateacceptor in the nucleophilic addition step as a result of replacing
addition—protonation with a complementary sense of diastereose- 1awith 2cas the catalyst. This hypothesis received validation from
lectivity with respect to that promoted Hycould be developed.  analysis of the absolute configurations of the major diastereomers
Accordingly, we investigated the reaction of 2-cyanoindanone 5a and 5'a generated from reactions with & and Q4a
3a and 4 with readily available cinchona alkaloids bearing a respectively, which were found to have the same configuratin (1
hydrogen bond donor at C9 (Scheme 1 and TabfeWhile both vs 1S) at the tertiary stereocenter but opposite configurati@ve3
natural cinchona alkaloids and their C9-epimers afforded poor 3R) at the quaternary stereocenter. The stereochemical outcome of

diastereoselectivity and enantioselectivity (entriest1Table 1), the asymmetric tandem reaction catalyzed by2dQeould be

the 9-thiourea cinchona alkaloi@swere found to afford dramati- rationalized bya proposed transition-state mod@lable 1), in which
cally enhanced diastereoselectivity and enantioselectivity (entriesthe putative enolic Michael donor approaches the Michael acceptor
5—7, Table 1). Upon optimizations the reaction witk2Qfurnished with its si face®
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Table 2. Reaction Scope?

CN CN ClI CN ClI

H O
X . . Q-2¢(QD-2¢) XW XW g
R)Y * 4 “Yoluene, 1t R CN+ R CN CN
30 120 h o g o "y 3d
entry Michael donor yield(5+5')/% d.r. ‘ies%?nfer:}e/ior
1 O n=1 3a 99(99) 10:1(9:1) 97(97)0
2 Cﬁ}cn n=2 3b 94(98) 16:1(12:1) 99(97)
3 " n=3 3c 98(96) 9:1(9:1) 97(96)
4 3d 98(97) 14:1(10:1) 94(98)
5  X=OEt R= Ph- 3e 98(99) 15:1(16:1) 95(95)
6° Ph- 3e 98 25:1 97
7 4-F-Ph- 3f 98(98) 13:1(12:1) 95(95)
8 4-Cl-Ph- 3g 98 13:1 %
9 4-Br-Ph- 3h 98(98) 12:1(12:1) 95(94)
10 4-Me-Ph- 3i 100 1411 95
11 4-MeO-Ph- 3j 99(99) 13:1(15:1) 95(95)
12 2-naphthyl- 3k 100 14:1 95
13 X=SMe, R= Me- 3I 98(98) 9:1(9:1) 96(96)°
14 allyl- 3m 99(98) 9:1(10:1) 95(95)

aSee Sl for experimental detailsFor absolute configuration determi-
nation, see Sl for detail§.This reaction was run at20 °C.

Under the optimized conditions tt&e-catalyzed reactions with
a variety of cyclica-substituted cyanoketon&a—d and acyclic
o-substituted cyanoesteBe—m proceeded in high diastereoselec-
tivity (9—25:1 dr), enantioselectivity (9499% ee), and excellent
yield (94—100%) (Table 2). Moreover, quinine(Q)- and quinidine-
(QD)-derived 2c afforded similarly high stereoselectivities and
yields (entries +5, 7, 9, 11, 13-14, Table 2). Thus, with the
complementary diastereoselectivities affordedLiand2c, respec-
tively, for reactions with a variety of Michael donor3a-d, 3e
3h, 3I),” the asymmetric tandem conjugate additigmmotonation
allowed the stereoselective construction of the 1,3-tertiary

guaternary stereocenters in any of the possible configurations from

the same starting materiaglsTo our knowledge, these results

constitute the first example of such a complete stereocontrol for a
catalytic asymmetric transformation creating nonadjacent stereo-

centers. Such catalyst-controlled constructions of 1,3-tertiary

Table 3. Asymmetric Michael Addition of 3 to Acrylonitrile 62

CN CN

X 4 ooy _Q20(QD20) XYV
RJ\F * =N toluene, rt R CN
30 6 0 7

entry donor yield/% ee/% entry donor yield/% ee/%
1 3a 100 9% 7 3i 92 90
2 3b 92 94 8 3 85 90
3 3e 95(93) 89(90) 9 3] 97 87
4 3f 84(87) 88(90) 10 3k 89 89
5 39 96(96) 88(89) 11 3l 80 93
6 3h 89(82) 89(89) 12 3m 82 91

a See Sl for experimental details.For absolute configuration deter-
mination, see Sl for detail$. This reaction was run at 5TC.

enantioselective and diastereoselective tandem reactions but also
could be manipulated to achieve diastereoselective control in such
reactions, thereby allowing catalyst-controlled, direct and stereo-

selective construction of two nonadjacent stereocenters in any of

the possible configurations from simple precursors.
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